

Improved quantification of SOC and SIC in Rock-Eval® thermal analysis

David Sebag, Violaine Lamoureux-Var, Isabelle Kowalewski, Herman Ravelojaona, Noémie Lefrançois

IFP Energies nouvelles, France

1. Technical issue

- The Rock-Eval[®] thermal method is increasingly used in soil science to quantify SOC and SIC, due to its reliability, speed and ease of execution
- The quantified Organic C and Inorganic C contents
 - are well suited to sedimentary rocks
 - need to be corrected for soils for better accuracy (Disnar et al., 2003)
 - in non-carbonate soils, where Total C = Organic C Rock-Eval[®] and Elementary Analysis data coincide (Malou et al., 2020)

- 0		
50	20 1	
	z $y = 1.02 * x + 0.01$	0

5. Technical solution

- The **SOTHIS correction method** provides **SOC and SIC with improved accuracy**, based on a conventional Rock-Eval[®] thermal analysis
- Applied to different soil samples covering a wide range of organic and mineral carbon contents, this method showed good agreement with the Elemental **Analysis** approach
- On carbonate soils : this method is faster, easier and more accurate than the **Elemental Analysis approach:**

4. Application

- unique analysis on a single soil sample
- pre-treatment reduced to grounding and drying

- 2-hour semi-automatic analysis
- standardized results
- limited sources of uncertainty

3. SOTHIS method for SOC and SIC accuracy improvement

Topsoils from 2 forests and 1 cropland with added organic substrates

 $\alpha = 0.04$ to 0.12

α y = 0,0777x $R^2 = 0,9563$ Aknowledgments to Senta

Blanquet and Simon Poirier, IFPEN-Biotechnologies Dp^t, for the dataset Poirier et al., 2022

0,5 3,5 **TOC (wt.%)**